百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Redis缓存篇之淘汰机制:缓存满了怎么办?

nanshan 2025-03-01 14:50 20 浏览 0 评论

缓存的容量总是小于后端数据库的。随着业务系统的使用,缓存数据会撑满内存空间,该怎么处理呢?

本节我们来学习内存淘汰机制。在Redis 4.0之前有6种内存淘汰策略,之后又增加2种,一共8种,如下图所示:

  • noeviction策略:内存空间达到maxmemory时,不会淘汰数据,有新写入时会返回错误。
  • volatile-ttl策略:针对设置了过期时间的键值对,根据过期时间的先后进行修改,越早过期的越先被删除。
  • volatile-random策略:在设置了过期时间的键值对中,进行随机删除。
  • volatile-lru策略:使用LRU算法筛选设置了过期时间的键值对,进行删除。
  • volatile-lfu策略:使用LFU算法筛选设置了过期时间的键值对,进行删除。
  • allkeys-random策略:在所有键值对中随机选择并删除数据。
  • allkeys-lru策略:使用LRU算法在所有数据中进行筛选并删除数据。
  • allkeys-lfu策略:使用LFU算法在所有数据中进行筛选并删除数据。

对于TTL、Random比较好理解,下面学习一下LRU和LFU算法。

LRU算法

LRU算法,全称Least Recently Used。

其中MRU端指最近访问的数据;LRU端指最早访问的数据。

被访问的数据和新插入的数据会移到MRU端,空间满了后从LRU端删除。这样一来,最早访问的数据会逐渐被淘汰。

但LRU算法也有其缺点:

  • 需要用链表管理所有缓存数据,带来额外的空间开销
  • 大量数据被访问,就会带来很多链表移动操作,降低Redis性能

而Redis对其进行简化:

  • Redis会记录每个数据的最近一次访问的时间戳(RedisObject中的lru字段)
  • Redis第一次淘汰数据时,会随机选出N个数据,作为一个候选集合。
  • 然后比较这N个数据的lru,把lru最小的从缓存中淘汰。

当再次淘汰数据时,会挑选数据放到第一次淘汰时的候选集合,要求小于候选集合中最小的lru值才能加入。

其中maxmemory-samples配置项:表示选出的个数N。可以通过以下命令进行设置:

CONFIG SET maxmemory-samples 100

LFU算法

LFU算法是在LRU策略基础上,为每个数据增加一个计数器,来统计这个数据的访问次数。

使用LFU策略筛选淘汰数据时,根据数据的访问次数进行筛选,把访问次数最低的数据淘汰。如果两个数据访问次数相同,再比较两个数据的访问时效性,把更久的数据淘汰。

如何实现

LFU也是使用RedisObject的lru字段来实现。

把24bit的lru字段拆分成两部分:

  • ldt值:lru字段的前16bit,表示数据的访问时间戳;
  • counter值:lru字段的后8bit,表示数据的访问次数;

当LFU策略淘汰数据时,Redis在候选集合中,根据lru字段的后8bit选择访问次数最小的数据进行淘汰。如果访问次数相同,再根据lru字段的前16bit值大小,选择更久的数据进行淘汰。

关于counter只有8bit(255)的问题

Redis并没有采用数据每被访问一次,就+1的规则,而是采用一个类似于随机+1的规则:

double r = (double)rand()/RAND_MAX;
...
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;   

通过设置 lfu_log_factor 配置项来控制计数器值增加的速度,避免counter很快到255。下图是 lfu_log_factor 设置不同值时,counter的增长情况:

总结

  • 如何设置缓存空间大小:设置为总数据量的15%到30%,兼顾访问性能和内存空间开销。
  • 优先使用allkeys-lru策略。如果业务数据中有明显的冷热数据区分,建议使用allkeys-lru策略。
  • 如果业务数据访问频繁相关不大,没有明显的冷热数据区分,建议使用allkeys-random策略。
  • 如果业务中有置顶的需要,可以使用volatile-lru策略,同时不给这些置顶数据设置过期时间。

作者:大杂草

原文链接:
https://www.cnblogs.com/liang24/p/14210482.html

相关推荐

0722-6.2.0-如何在RedHat7.2使用rpm安装CDH(无CM)

文档编写目的在前面的文档中,介绍了在有CM和无CM两种情况下使用rpm方式安装CDH5.10.0,本文档将介绍如何在无CM的情况下使用rpm方式安装CDH6.2.0,与之前安装C5进行对比。环境介绍:...

ARM64 平台基于 openEuler + iSula 环境部署 Kubernetes

为什么要在arm64平台上部署Kubernetes,而且还是鲲鹏920的架构。说来话长。。。此处省略5000字。介绍下系统信息;o架构:鲲鹏920(Kunpeng920)oOS:ope...

生产环境starrocks 3.1存算一体集群部署

集群规划FE:节点主要负责元数据管理、客户端连接管理、查询计划和查询调度。>3节点。BE:节点负责数据存储和SQL执行。>3节点。CN:无存储功能能的BE。环境准备CPU检查JDK...

在CentOS上添加swap虚拟内存并设置优先级

现如今很多云服务器都会自己配置好虚拟内存,当然也有很多没有配置虚拟内存的,虚拟内存可以让我们的低配服务器使用更多的内存,可以减少很多硬件成本,比如我们运行很多服务的时候,内存常常会满,当配置了虚拟内存...

国产深度(deepin)操作系统优化指南

1.升级内核随着deepin版本的更新,会自动升级系统内核,但是我们依旧可以通过命令行手动升级内核,以获取更好的性能和更多的硬件支持。具体操作:-添加PPAs使用以下命令添加PPAs:```...

postgresql-15.4 多节点主从(读写分离)

1、下载软件[root@TX-CN-PostgreSQL01-252software]#wgethttps://ftp.postgresql.org/pub/source/v15.4/postg...

Docker 容器 Java 服务内存与 GC 优化实施方案

一、设置Docker容器内存限制(生产环境建议)1.查看宿主机可用内存bashfree-h#示例输出(假设宿主机剩余16GB可用内存)#Mem:64G...

虚拟内存设置、解决linux内存不够问题

虚拟内存设置(解决linux内存不够情况)背景介绍  Memory指机器物理内存,读写速度低于CPU一个量级,但是高于磁盘不止一个量级。所以,程序和数据如果在内存的话,会有非常快的读写速度。但是,内存...

Elasticsearch性能调优(5):服务器配置选择

在选择elasticsearch服务器时,要尽可能地选择与当前业务量相匹配的服务器。如果服务器配置太低,则意味着需要更多的节点来满足需求,一个集群的节点太多时会增加集群管理的成本。如果服务器配置太高,...

Es如何落地

一、配置准备节点类型CPU内存硬盘网络机器数操作系统data节点16C64G2000G本地SSD所有es同一可用区3(ecs)Centos7master节点2C8G200G云SSD所有es同一可用区...

针对Linux内存管理知识学习总结

现在的服务器大部分都是运行在Linux上面的,所以,作为一个程序员有必要简单地了解一下系统是如何运行的。对于内存部分需要知道:地址映射内存管理的方式缺页异常先来看一些基本的知识,在进程看来,内存分为内...

MySQL进阶之性能优化

概述MySQL的性能优化,包括了服务器硬件优化、操作系统的优化、MySQL数据库配置优化、数据库表设计的优化、SQL语句优化等5个方面的优化。在进行优化之前,需要先掌握性能分析的思路和方法,找出问题,...

Linux Cgroups(Control Groups)原理

LinuxCgroups(ControlGroups)是内核提供的资源分配、限制和监控机制,通过层级化进程分组实现资源的精细化控制。以下从核心原理、操作示例和版本演进三方面详细分析:一、核心原理与...

linux 常用性能优化参数及理解

1.优化内核相关参数配置文件/etc/sysctl.conf配置方法直接将参数添加进文件每条一行.sysctl-a可以查看默认配置sysctl-p执行并检测是否有错误例如设置错了参数:[roo...

如何在 Linux 中使用 Sysctl 命令?

sysctl是一个用于配置和查询Linux内核参数的命令行工具。它通过与/proc/sys虚拟文件系统交互,允许用户在运行时动态修改内核参数。这些参数控制着系统的各种行为,包括网络设置、文件...

取消回复欢迎 发表评论: