还不会Elasticsearch?看这些知识入门刚刚好
nanshan 2025-01-13 16:33 12 浏览 0 评论
作者:MacroZheng 链接:https://juejin.im/post/5e8c7d65518825736512d097
记得刚接触Elasticsearch的时候,没找啥资料,直接看了遍Elasticsearch的中文官方文档,中文文档很久没更新了,一直都是2.3的版本。最近又重新看了遍6.0的官方文档,由于官方文档介绍的内容比较多,每次看都很费力,所以这次整理了其中最常用部分,写下了这篇入门教程,希望对大家有所帮助。
简介
Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式的全文搜索引擎,基于restful web接口。Elasticsearch是用Java语言开发的,基于Apache协议的开源项目,是目前最受欢迎的企业搜索引擎。Elasticsearch广泛运用于云计算中,能够达到实时搜索,具有稳定,可靠,快速的特点。
安装
Windows下的安装
Elasticsearch
- 下载Elasticsearch 6.2.2的zip包,并解压到指定目录,下载地址:www.elastic.co/cn/download…
- 安装中文分词插件,在elasticsearch-6.2.2\bin目录下执行以下命令;
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.2/elasticsearch-analysis-ik-6.2.2.zip
复制代码
- 运行bin目录下的elasticsearch.bat启动Elasticsearch;
Kibana
- 下载Kibana,作为访问Elasticsearch的客户端,请下载6.2.2版本的zip包,并解压到指定目录,下载地址:artifacts.elastic.co/downloads/k…
- 运行bin目录下的kibana.bat,启动Kibana的用户界面
- 访问http://localhost:5601 即可打开Kibana的用户界面:
Linux下的安装
Elasticsearch
- 下载elasticsearch 6.4.0的docker镜像;
docker pull elasticsearch:6.4.0
- 修改虚拟内存区域大小,否则会因为过小而无法启动;
sysctl -w vm.max_map_count=262144
- 使用docker命令启动;
docker run -p 9200:9200 -p 9300:9300 --name elasticsearch \
-e "discovery.type=single-node" \
-e "cluster.name=elasticsearch" \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-d elasticsearch:6.4.0
- 启动时会发现/usr/share/elasticsearch/data目录没有访问权限,只需要修改该目录的权限,再重新启动即可;
chmod 777 /mydata/elasticsearch/data/
- 安装中文分词器IKAnalyzer,并重新启动;
docker exec -it elasticsearch /bin/bash
#此命令需要在容器中运行
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.0/elasticsearch-analysis-ik-6.4.0.zip
docker restart elasticsearch
- 访问会返回版本信息:http://192.168.3.101:9200/
Kibina
- 下载kibana 6.4.0的docker镜像;
docker pull kibana:6.4.0
- 使用docker命令启动;
docker run --name kibana -p 5601:5601 \
--link elasticsearch:es \
-e "elasticsearch.hosts=http://es:9200" \
-d kibana:6.4.0
- 访问地址进行测试:http://192.168.3.101:5601
相关概念
- Near Realtime(近实时):Elasticsearch是一个近乎实时的搜索平台,这意味着从索引文档到可搜索文档之间只有一个轻微的延迟(通常是一秒钟)。
- Cluster(集群):群集是一个或多个节点的集合,它们一起保存整个数据,并提供跨所有节点的联合索引和搜索功能。每个群集都有自己的唯一群集名称,节点通过名称加入群集。
- Node(节点):节点是指属于集群的单个Elasticsearch实例,存储数据并参与集群的索引和搜索功能。可以将节点配置为按集群名称加入特定集群,默认情况下,每个节点都设置为加入一个名为elasticsearch的群集。
- Index(索引):索引是一些具有相似特征的文档集合,类似于MySql中数据库的概念。
- Type(类型):类型是索引的逻辑类别分区,通常,为具有一组公共字段的文档类型,类似MySql中表的概念。注意:在Elasticsearch 6.0.0及更高的版本中,一个索引只能包含一个类型。
- Document(文档):文档是可被索引的基本信息单位,以JSON形式表示,类似于MySql中行记录的概念。
- Shards(分片):当索引存储大量数据时,可能会超出单个节点的硬件限制,为了解决这个问题,Elasticsearch提供了将索引细分为分片的概念。分片机制赋予了索引水平扩容的能力、并允许跨分片分发和并行化操作,从而提高性能和吞吐量。
- Replicas(副本):在可能出现故障的网络环境中,需要有一个故障切换机制,Elasticsearch提供了将索引的分片复制为一个或多个副本的功能,副本在某些节点失效的情况下提供高可用性。
集群状态查看
- 查看集群健康状态;
GET /_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1585552862 15:21:02 elasticsearch yellow 1 1 27 27 0 0 25 0 - 51.9
- 查看节点状态;
GET /_cat/nodes?v
ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
127.0.0.1 23 94 28 mdi * KFFjkpV
- 查看所有索引信息;
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
索引操作
- 创建索引并查看;
PUT /customer
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open customer 9uPjf94gSq-SJS6eOuJrHQ 5 1 0 0 460b 460b
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
- 删除索引并查看;
DELETE /customer
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
类型操作
- 查看文档的类型;
GET /bank/account/_mapping
{
"bank": {
"mappings": {
"account": {
"properties": {
"account_number": {
"type": "long"
},
"address": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"age": {
"type": "long"
},
"balance": {
"type": "long"
},
"city": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"email": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"employer": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"firstname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"gender": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"lastname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"state": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
}
文档操作
- 在索引中添加文档;
PUT /customer/doc/1
{
"name": "John Doe"
}
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 3,
"_primary_term": 1
}
- 查看索引中的文档;
GET /customer/doc/1
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 2,
"found": true,
"_source": {
"name": "John Doe"
}
}
- 修改索引中的文档:
POST /customer/doc/1/_update
{
"doc": { "name": "Jane Doe" }
}
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 4,
"_primary_term": 1
}
- 删除索引中的文档;
DELETE /customer/doc/1
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 3,
"result": "deleted",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 2,
"_primary_term": 1
- 对索引中的文档执行批量操作;
POST /customer/doc/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
{
"took": 45,
"errors": false,
"items": [
{
"index": {
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 3,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 5,
"_primary_term": 1,
"status": 200
}
},
{
"index": {
"_index": "customer",
"_type": "doc",
"_id": "2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1,
"status": 201
}
}
]
}
数据搜索
查询表达式(Query DSL)是一种非常灵活又富有表现力的查询语言,Elasticsearch使用它可以以简单的JSON接口来实现丰富的搜索功能,下面的搜索操作都将使用它。
数据准备
- 首先我们需要导入一定量的数据用于搜索,使用的是银行账户表的例子,数据结构如下:
{
"account_number": 0,
"balance": 16623,
"firstname": "Bradshaw",
"lastname": "Mckenzie",
"age": 29,
"gender": "F",
"address": "244 Columbus Place",
"employer": "Euron",
"email": "bradshawmckenzie@euron.com",
"city": "Hobucken",
"state": "CO"
}
- 我们先复制下需要导入的数据,数据地址: github.com/macrozheng/…
- 然后直接使用批量操作来导入数据,注意本文所有操作都在Kibana的Dev Tools中进行;
POST /bank/account/_bulk
{
"index": {
"_id": "1"
}
}
{
"account_number": 1,
"balance": 39225,
"firstname": "Amber",
"lastname": "Duke",
"age": 32,
"gender": "M",
"address": "880 Holmes Lane",
"employer": "Pyrami",
"email": "amberduke@pyrami.com",
"city": "Brogan",
"state": "IL"
}
......省略若干条数据
- 导入完成后查看索引信息,可以发现bank索引中已经创建了1000条文档。
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open bank HFjxDLNLRA-NATPKUQgjBw 5 1 1000 0 474.6kb 474.6kb
搜索入门
- 最简单的搜索,使用match_all来表示,例如搜索全部;
GET /bank/_search
{
"query": { "match_all": {} }
}
- 分页搜索,from表示偏移量,从0开始,size表示每页显示的数量;
GET /bank/_search
{
"query": { "match_all": {} },
"from": 0,
"size": 10
}
- 搜索排序,使用sort表示,例如按balance字段降序排列;
GET /bank/_search
{
"query": { "match_all": {} },
"sort": { "balance": { "order": "desc" } }
}
- 搜索并返回指定字段内容,使用_source表示,例如只返回account_number和balance两个字段内容:
GET /bank/_search
{
"query": { "match_all": {} },
"_source": ["account_number", "balance"]
}
条件搜索
- 条件搜索,使用match表示匹配条件,例如搜索出account_number为20的文档:
GET /bank/_search
{
"query": {
"match": {
"account_number": 20
}
}
}
- 文本类型字段的条件搜索,例如搜索address字段中包含mill的文档,对比上一条搜索可以发现,对于数值类型match操作使用的是精确匹配,对于文本类型使用的是模糊匹配;
GET /bank/_search
{
"query": {
"match": {
"address": "mill"
}
},
"_source": [
"address",
"account_number"
]
}
- 短语匹配搜索,使用match_phrase表示,例如搜索address字段中同时包含mill和lane的文档:
GET /bank/_search
{
"query": {
"match_phrase": {
"address": "mill lane"
}
}
}
组合搜索
- 组合搜索,使用bool来进行组合,must表示同时满足,例如搜索address字段中同时包含mill和lane的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
- 组合搜索,should表示满足其中任意一个,搜索address字段中包含mill或者lane的文档;
GET /bank/_search
{
"query": {
"bool": {
"should": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
- 组合搜索,must_not表示同时不满足,例如搜索address字段中不包含mill且不包含lane的文档;
GET /bank/_search
{
"query": {
"bool": {
"must_not": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
- 组合搜索,组合must和must_not,例如搜索age字段等于40且state字段不包含ID的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": [
{ "match": { "age": "40" } }
],
"must_not": [
{ "match": { "state": "ID" } }
]
}
}
}
过滤搜索
- 搜索过滤,使用filter来表示,例如过滤出balance字段在20000~30000的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": { "match_all": {} },
"filter": {
"range": {
"balance": {
"gte": 20000,
"lte": 30000
}
}
}
}
}
}
搜索聚合
- 对搜索结果进行聚合,使用aggs来表示,类似于MySql中的group by,例如对state字段进行聚合,统计出相同state的文档数量;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword"
}
}
}
}
- 嵌套聚合,例如对state字段进行聚合,统计出相同state的文档数量,再统计出balance的平均值;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword"
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
- 对聚合搜索的结果进行排序,例如按balance的平均值降序排列;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword",
"order": {
"average_balance": "desc"
}
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
- 按字段值的范围进行分段聚合,例如分段范围为age字段的[20,30] [30,40] [40,50],之后按gender统计文档个数和balance的平均值;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_age": {
"range": {
"field": "age",
"ranges": [
{
"from": 20,
"to": 30
},
{
"from": 30,
"to": 40
},
{
"from": 40,
"to": 50
}
]
},
"aggs": {
"group_by_gender": {
"terms": {
"field": "gender.keyword"
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
}
}
感悟
从正式成为一名程序员的那天起,注定要进行没有止境的学习,想要进阶高级或者专家,就要坚持每天都高效的学习,不要给自己的懒惰找借口,“什么我也想学习可是又没有资源”,这次我给你整理好了,我看你还有啥理由!私信回复【666】送你
相关推荐
- Let’s Encrypt免费搭建HTTPS网站
-
HTTPS(全称:HyperTextTransferProtocoloverSecureSocketLayer),是以安全为目标的HTTP通道,简单讲是HTTP的安全版。即HTTP下加入...
- 使用Nginx配置TCP负载均衡(nginx tcp负载)
-
假设Kubernetes集群已经配置好,我们将基于CentOS为Nginx创建一个虚拟机。以下是实验种设置的详细信息:Nginx(CenOS8Minimal)-192.168.1.50Kube...
- Nginx负载均衡及支持HTTPS与申请免费SSL证书
-
背景有两台minio文件服务器已做好集群配置,一台是192.168.56.41:9000;另一台是192.168.56.42:9000。应用程序通过Nginx负载均衡调用这两台minio服务,减轻单点...
- HTTPS配置实战(https配置文件)
-
原因现在网站使用HTTPS是规范操作之一,前些日子买了腾讯云服务,同时申请了域名http://www.asap2me.top/,目前该域名只支持HTTP,想升级为HTTPS。关于HTTPS的链接过程大...
- 只有IP地址没有域名实现HTTPS访问方法
-
一般来说,要实现HTTPS,得有个注册好的域名才行。但有时候呢,咱只有服务器的IP地址,没注册域名,这种特殊情况下,也能照样实现HTTPS安全访问,按下面这些步骤来就行:第一步,先确认公网...
- 超详解:HTTPS及配置Django+HTTPS开发环境
-
众所周知HTTP协议是以TCP协议为基石诞生的一个用于传输Web内容的一个网络协议,在“网络分层模型”中属于“应用层协议”的一种。在这里我们并不研究该协议标准本身,而是从安全角度去探究使用该协议传输数...
- Godaddy购买SSL之后Nginx配置流程以及各种错误的解决
-
完整流程:参考地址:https://sg.godaddy.com/zh/help/nginx-generate-csrs-certificate-signing-requests-3601生成NGI...
- Nginx从安装到高可用,一篇搞定(nginx安装与配置详解)
-
一、Nginx安装1、去官网http://nginx.org/下载对应的nginx包,推荐使用稳定版本2、上传nginx到linux系统3、安装依赖环境(1)安装gcc环境yuminstallgc...
- 阿里云免费证书申请,配置安装,使用tomcat,支持http/https访问
-
参数说明商品类型默认已选择云盾证书服务(无需修改)。云盾证书服务类型SSL证书服务的类型。默认已选择云盾SSL证书(无需修改),表示付费版SSL证书。如果您需要免费领取或付费扩容DV单域名证书【免费试...
- 你试过两步实现Nginx的规范配置吗?极速生成Nginx配置小工具
-
NGINX是一款轻量级的Web服务器,最强大的功能之一是能够有效地提供HTML和媒体文件等静态内容。NGINX使用异步事件驱动模型,在负载下提供可预测的性能。是当下最受欢迎的高性能的Web...
- 从零开始搭建HTTPS服务(搭建https网站)
-
搭建HTTPS服务的最初目的是为了开发微信小程序,因为wx.request只允许发起HTTPS请求,并且还必须和指定的域名进行网络通信。要从零开始搭建一个HTTPS的服务需要下面4...
- 群晖NAS使用官网域名和自己的域名配置SSL实现HTTPS访问
-
安全第一步,群晖NAS使用官网域名和自己的域名配置SSL实现HTTPS访问【新手导向】NAS本质还是一个可以随时随地访问的个人数据存储中心,我们在外网访问的时候,特别是在公网IP下,其实会面临着很多安...
- 让网站快速升级HTTPS协议提高安全性
-
为什么用HTTPS网络安全越来越受到重视,很多互联网服务网站,都已经升级改造为https协议。https协议下数据包是ssl/tcl加密的,而http包是明文传输。如果请求一旦被拦截,数据就会泄露产生...
- 用Https方式访问Harbor-1.9版本(https访问流程)
-
我上周在头条号写过一篇原创文章《Docker-Harbor&Docker-kitematic史上最详细双系统配置手册》,这篇算是它的姊妹篇吧。这篇文章也将用到我在头条写的另一篇原创文章的...
- 如何启用 HTTPS 并配置免费的 SSL 证书
-
在Linux服务器上启用HTTPS并配置免费的SSL证书(以Let'sEncrypt为例)可以通过以下步骤完成:---###**一、准备工作**1.**确保域名已解析**...
你 发表评论:
欢迎- 一周热门
-
-
极空间如何无损移机,新Z4 Pro又有哪些升级?极空间Z4 Pro深度体验
-
如何在安装前及安装后修改黑群晖的Mac地址和Sn系列号
-
爱折腾的特斯拉车主必看!手把手教你TESLAMATE的备份和恢复
-
10个免费文件中转服务站,分享文件简单方便,你知道几个?
-
[常用工具] OpenCV_contrib库在windows下编译使用指南
-
日本海上自卫队的军衔制度(日本海上自卫队的军衔制度是什么)
-
Ubuntu系统Daphne + Nginx + supervisor部署Django项目
-
WindowsServer2022|配置NTP服务器的命令
-
【系统配置】信创终端挂载NAS共享全攻略:一步到位!
-
UOS服务器操作系统防火墙设置(uos20关闭防火墙)
-
- 最近发表
- 标签列表
-
- linux 查询端口号 (58)
- docker映射容器目录到宿主机 (66)
- 杀端口 (60)
- yum更换阿里源 (62)
- internet explorer 增强的安全配置已启用 (65)
- linux自动挂载 (56)
- 禁用selinux (55)
- sysv-rc-conf (69)
- ubuntu防火墙状态查看 (64)
- windows server 2022激活密钥 (56)
- 无法与服务器建立安全连接是什么意思 (74)
- 443/80端口被占用怎么解决 (56)
- ping无法访问目标主机怎么解决 (58)
- fdatasync (59)
- 405 not allowed (56)
- 免备案虚拟主机zxhost (55)
- linux根据pid查看进程 (60)
- dhcp工具 (62)
- mysql 1045 (57)
- 宝塔远程工具 (56)
- ssh服务器拒绝了密码 请再试一次 (56)
- ubuntu卸载docker (56)
- linux查看nginx状态 (63)
- tomcat 乱码 (76)
- 2008r2激活序列号 (65)