ChatGLM3模型搭建教程
nanshan 2024-11-25 15:26 18 浏览 0 评论
一、介绍
ChatGLM3 是智谱 AI 和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
- 更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能。
- 更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
- 更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K。以上所有权重对学术研究完全开放 ,在填写 问卷 进行登记后 亦允许免费商业使用 。
二、 部署过程
基础环境最低要求说明:
环境名称 | 版本信息1 | 版本信息2 |
Ubuntu | 22.04.4 LTS | |
Cuda | V12.1.105 | |
Python | 3.10.8 | 3.12.4 |
NVIDIA Corporation | RTX 3060 *2 | RTX 3090 |
1. 更新基础软件包
查看系统版本信息
# 查看系统版本信息,包括ID(如ubuntu、centos等)、版本号、名称、版本号ID等
cat /etc/os-release
配置 apt 国内源
# 更新软件包列表
apt-get update
这个命令用于更新本地软件包索引。它会从所有配置的源中检索最新的软件包列表信息,但不会安装或升级任何软件包。这是安装新软件包或进行软件包升级之前的推荐步骤,因为它确保了您获取的是最新版本的软件包。
# 安装 Vim 编辑器
apt-get install -y vim
这个命令用于安装 Vim 文本编辑器。-y 选项表示自动回答所有的提示为“是”,这样在安装过程中就不需要手动确认。Vim 是一个非常强大的文本编辑器,广泛用于编程和配置文件的编辑。
为了安全起见,先备份当前的 sources.list 文件之后,再进行修改:
# 备份现有的软件源列表
cp /etc/apt/sources.list /etc/apt/sources.list.bak
这个命令将当前的 sources.list 文件复制为一个名为 sources.list.bak 的备份文件。因为编辑 sources.list 文件时可能会出错,导致无法安装或更新软件包,有了备份,如果出现问题,您可以轻松地恢复原始的文件。
# 编辑软件源列表文件
vim /etc/apt/sources.list
这个命令使用 Vim 编辑器打开 sources.list 文件,以便您可以编辑它。这个文件包含了 APT(Advanced Package Tool)用于安装和更新软件包的软件源列表。通过编辑这个文件,您可以添加新的软件源、更改现有软件源的优先级或禁用某些软件源。
在 Vim 中,您可以使用方向键来移动光标,
i 键进入插入模式(可以开始编辑文本),
Esc 键退出插入模式,
:wq 命令保存更改并退出 Vim,
或 :q! 命令不保存更改并退出 Vim。
编辑 sources.list 文件时,请确保您了解自己在做什么,特别是如果您正在添加新的软件源,因为错误的源可能会导致软件包安装失败或系统安全问题。如果您不确定,最好先搜索并找到可靠的源信息,或者咨询有经验的 Linux 用户。
使用 Vim 编辑器打开 sources.list 文件,复制以下代码替换 sources.list里面的全部代码,配置 apt 国内阿里源。
deb http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
安装常用软件和工具
# 更新源列表,输入以下命令:
apt-get update
# 更新系统软件包,输入以下命令:
apt-get upgrade
# 安装常用软件和工具,输入以下命令:
apt-get -y install vim wget git git-lfs unzip lsof net-tools gcc cmake build-essential
出现以下页面,说明国内apt源已替换成功,并且能够正常安装apt软件和工具
2. 安装 NVIDIA CUDA Toolkit 12.1
- 下载 CUDA Keyring :
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb
这个命令用于下载 CUDA 的 GPG 密钥环,它用于验证 CUDA 软件包的签名。这是确保软件包安全性的一个重要步骤。
- 安装 CUDA Keyring :
dpkg -i cuda-keyring_1.0-1_all.deb
使用 dpkg 安装下载的密钥环。这一步是必需的,以便 apt 能够验证从 NVIDIA 仓库下载的软件包的签名。
- 删除旧的 apt 密钥(如果必要) :
apt-key del 7fa2af80
这一步可能不是必需的,除非您知道 7fa2af80 是与 CUDA 相关的旧密钥,并且您想从系统中删除它避免混淆。通常情况下,如果您只是安装 CUDA 并使用 NVIDIA 提供的最新密钥环,这一步可以跳过。
- 更新 apt 包列表 :
apt-get update
更新 apt 的软件包列表,以便包括刚刚通过 cuda-keyring 添加的 NVIDIA 仓库中的软件包。
- 安装 CUDA Toolkit :
apt-get -y install cuda-toolkit-12-1
出现以下页面,说明 NVIDIA CUDA Toolkit 12.1 安装成功
注意:这里可能有一个问题。NVIDIA 官方 Ubuntu 仓库中可能不包含直接名为 cuda-toolkit-12-1 的包。通常,您会安装一个名为 cuda 或 cuda-12-1 的元包,它会作为依赖项拉入 CUDA Toolkit 的所有组件。请检查 NVIDIA 的官方文档或仓库,以确认正确的包名。
如果您正在寻找安装特定版本的 CUDA Toolkit,您可能需要安装类似 cuda-12-1 的包(如果可用),或者从 NVIDIA 的官方网站下载 CUDA Toolkit 的 .run 安装程序进行手动安装。
请确保您已查看 NVIDIA 的官方文档或 Ubuntu 的 NVIDIA CUDA 仓库以获取最准确的包名和安装指令。
- 出现以上情况,需要配置 NVIDIA CUDA Toolkit 12.1 系统环境变量
编辑 ~/.bashrc 文件
# 编辑 ~/.bashrc 文件
vim ~/.bashrc
插入以下环境变量
# 插入以下环境变量
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
激活 ~/.bashrc 文件
# 激活 ~/.bashrc 文件
source ~/.bashrc
查看cuda系统环境变量
which nvcc
nvcc -V
3. 安装 Miniconda
- 下载 Miniconda 安装脚本 :使用 wget 命令从 Anaconda 的官方仓库下载 Miniconda 的安装脚本。Miniconda 是一个更小的 Anaconda 发行版,包含了 Anaconda 的核心组件,用于安装和管理 Python 包。
- 运行 Miniconda 安装脚本 :使用 bash 命令运行下载的 Miniconda 安装脚本。这将启动 Miniconda 的安装过程。
# 下载 Miniconda 安装脚本
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# 运行 Miniconda 安装脚本
bash Miniconda3-latest-Linux-x86_64.sh
# 初次安装需要激活 base 环境
source ~/.bashrc
按下回车键(enter)
输入yes
输入yes
安装成功如下图所示
pip配置清华源加速
# 编辑 /etc/pip.conf 文件
vim /etc/pip.conf
加入以下代码
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
注意事项:
- 请确保您的系统是 Linux x86_64 架构,因为下载的 Miniconda 版本是为该架构设计的。
- 在运行安装脚本之前,您可能需要使用 chmod +x Miniconda3-latest-Linux-x86_64.sh 命令给予脚本执行权限。
- 安装过程中,您将被提示是否同意许可协议,以及是否将 Miniconda 初始化。通常选择 "yes" 以完成安装和初始化。
- 安装完成后,您可以使用 conda 命令来管理 Python 环境和包。
- 如果链接无法访问或解析失败,可能是因为网络问题或链接本身的问题。请检查网络连接,并确保链接是最新和有效的。如果问题依旧,请访问 Anaconda 的官方网站获取最新的下载链接。
4. 从github 仓库克隆项目
- 克隆存储库:git clone https://github.com/THUDM/ChatGLM3这个命令使用 git clone 从指定的 GitHub 地址克隆 "ChatGLM3" 项目,默认情况下 Git 会克隆整个项目的所有提交历史。
- 切换目录:cd ChatGLM3这个命令使用 cd(change directory)命令切换当前工作目录到刚才克隆的 "ChatGLM3" 目录中。这意味着接下来执行的所有命令都是在该项目目录下执行。
# 克隆 ChatGLM3 项目
git clone https://github.com/THUDM/ChatGLM3
# 切换到克隆的项目目录中
cd ChatGLM3
出现以上页面即是克隆项目成功!
请注意,如果 git clone https://github.com/THUDM/ChatGLM3 这个链接不存在或者无效,git clone 命令将不会成功克隆项目,并且会报错。确保链接是有效的,并且您有足够的权限访问该存储库。
5. 创建虚拟环境
# 创建一个名为 ChatGLM3 的新虚拟环境,并指定 Python 版本为 3.10.8
conda create --name ChatGLM3 python=3.10.8
# 激活新创建的虚拟环境
conda activate ChatGLM3
6. 安装模型依赖库:
- 切换到项目目录
# 切换到项目工作目录
cd /ChatGLM3
- 激活 ChatGLM3 虚拟环境
conda activate ChatGLM3
- 安装 requirements.txt 依赖
# 在 ChatGLM3 环境中安装 requirements.txt 依赖
pip install -r requirements.txt
依赖安装成功如下图所示:
7. 下载预训练模型:
# 创建一个THUDM文件夹
mkdir -p /ChatGLM3/basic_demo/THUDM
# 递归复制ChatGLM3这个整体文件夹到数据盘位置(因为模型有点大,系盘无法存放)
cp -r /ChatGLM3 /root/sj-tmp/
# 切换到 ChatGLM3 项目的 THUDM 目录
cd /root/sj-tmp/ChatGLM3/basic_demo/THUDM
安装 modelscope 依赖包
pip install modelscope
创建一个Python下载脚本
vim modelscope_download.py
插入以下下载代码
# Python 代码下载模型
from modelscope import snapshot_download
model_dir = snapshot_download('ZhipuAI/chatglm3-6b', cache_dir='./', revision='master')
执行 modelscope_download.py 文件进行模型下载
python modelscope_download.py
8. 运行 web_demo_gradio.py 文件
cd /root/sj-tmp/ChatGLM3/basic_demo/
python web_demo_gradio.py
出现以上代码“ModuleNotFoundError: No module named 'peft'”报错,安装 peft 依赖包
# 安装 peft
pip install peft
出现以上报错,需要修改模型路径
# 编辑 web_demo_gradio.py 文件
vim web_demo_gradio.py
替换为
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/ZhipuAI/chatglm3-6b')
出现以上结果,还需要继续修改 web_demo_gradio.py 文件的IP和端口,才能进入 gradio 页面
编辑 web_demo_gradio.py 文件
vim web_demo_gradio.py
替换为
demo.launch(server_name="0.0.0.0", server_port=8080, inbrowser=True, share=True)
替换说明:server_name 为IP地址, server_port 为端口号,根据访问需求进行替换即可
三、网页演示
出现以下Gradio 页面,即是模型已搭建完成。
相关推荐
- 服务器数据恢复—Raid5数据灾难不用愁,Raid5数据恢复原理了解下
-
Raid5数据恢复算法原理:分布式奇偶校验的独立磁盘结构(被称之为raid5)的数据恢复有一个“奇偶校验”的概念。可以简单的理解为二进制运算中的“异或运算”,通常使用的标识是xor。运算规则:若二者值...
- 服务器数据恢复—多次异常断电导致服务器raid不可用的数据恢复
-
服务器数据恢复环境&故障:由于机房多次断电导致一台服务器中raid阵列信息丢失。该阵列中存放的是文档,上层安装的是Windowsserver操作系统,没有配置ups。因为服务器异常断电重启后,rai...
- 服务器数据恢复-V7000存储更换磁盘数据同步失败的数据恢复案例
-
服务器数据恢复环境:P740+AIX+Sybase+V7000存储,存储阵列柜上共12块SAS机械硬盘(其中一块为热备盘)。服务器故障:存储阵列柜中有磁盘出现故障,工作人员发现后更换磁盘,新更换的磁盘...
- 「服务器数据恢复」重装系统导致XFS文件系统分区丢失的数据恢复
-
服务器数据恢复环境:DellPowerVault系列磁盘柜;用RAID卡创建的一组RAID5;分配一个LUN。服务器故障:在Linux系统层面对LUN进行分区,划分sdc1和sdc2两个分区。将sd...
- 服务器数据恢复-ESXi虚拟机被误删的数据恢复案例
-
服务器数据恢复环境:一台服务器安装的ESXi虚拟化系统,该虚拟化系统连接了多个LUN,其中一个LUN上运行了数台虚拟机,虚拟机安装WindowsServer操作系统。服务器故障&分析:管理员因误操作...
- 「服务器数据恢复」Raid5阵列两块硬盘亮黄灯掉线的数据恢复案例
-
服务器数据恢复环境:HPStorageWorks某型号存储;虚拟化平台为vmwareexsi;10块磁盘组成raid5(有1块热备盘)。服务器故障:raid5阵列中两块硬盘指示灯变黄掉线,无法读取...
- 服务器数据恢复—基于oracle数据库的SAP数据恢复案例
-
服务器存储数据恢复环境:某品牌服务器存储中有一组由6块SAS硬盘组建的RAID5阵列,其中有1块硬盘作为热备盘使用。上层划分若干lun,存放Oracle数据库数据。服务器存储故障&分析:该RAID5阵...
- 「服务器虚拟化数据恢复」Xen Server环境下数据库数据恢复案例
-
服务器虚拟化数据恢复环境:Dell某型号服务器;数块STAT硬盘通过raid卡组建的RAID10;XenServer服务器虚拟化系统;故障虚拟机操作系统:WindowsServer,部署Web服务...
- 服务器数据恢复—RAID故障导致oracle无法启动的数据恢复案例
-
服务器数据恢复环境:某品牌服务器中有一组由4块SAS磁盘做的RAID5磁盘阵列。该服务器操作系统为windowsserver,运行了一个单节点Oracle,数据存储为文件系统,无归档。该oracle...
- 服务器数据恢复—服务器磁盘阵列常见故障表现&解决方案
-
RAID(磁盘阵列)是一种将多块物理硬盘整合成一个虚拟存储的技术,raid模块相当于一个存储管理的中间层,上层接收并执行操作系统及文件系统的数据读写指令,下层管理数据在各个物理硬盘上的存储及读写。相对...
- 「服务器数据恢复」IBM某型号服务器RAID5磁盘阵列数据恢复案例
-
服务器数据恢复环境:IBM某型号服务器;5块SAS硬盘组成RAID5磁盘阵列;存储划分为1个LUN和3个分区:第一个分区存放windowsserver系统,第二个分区存放SQLServer数据库,...
- 服务器数据恢复—Zfs文件系统下误删除文件如何恢复数据?
-
服务器故障:一台zfs文件系统服务器,管理员误操作删除服务器上的数据。服务器数据恢复过程:1、将故障服务器所有磁盘编号后取出,硬件工程师检测所有硬盘后没有发现有磁盘存在硬件故障。以只读方式将全部磁盘做...
- 服务器数据恢复—Linux+raid5服务器数据恢复案例
-
服务器数据恢复环境:某品牌linux操作系统服务器,服务器中有4块SAS接口硬盘组建一组raid5阵列。服务器中存放的数据有数据库、办公文档、代码文件等。服务器故障&检测:服务器在运行过程中突然瘫痪,...
- 服务器数据恢复—Sql Server数据库数据恢复案例
-
服务器数据恢复环境:一台安装windowsserver操作系统的服务器。一组由8块硬盘组建的RAID5,划分LUN供这台服务器使用。在windows服务器内装有SqlServer数据库。存储空间LU...
- 服务器数据恢复—阿里云ECS网站服务器数据恢复案例
-
云服务器数据恢复环境:阿里云ECS网站服务器,linux操作系统+mysql数据库。云服务器故障:在执行数据库版本更新测试时,在生产库误执行了本来应该在测试库执行的sql脚本,导致生产库部分表被tru...
你 发表评论:
欢迎- 一周热门
-
-
爱折腾的特斯拉车主必看!手把手教你TESLAMATE的备份和恢复
-
如何在安装前及安装后修改黑群晖的Mac地址和Sn系列号
-
[常用工具] OpenCV_contrib库在windows下编译使用指南
-
WindowsServer2022|配置NTP服务器的命令
-
Ubuntu系统Daphne + Nginx + supervisor部署Django项目
-
WIN11 安装配置 linux 子系统 Ubuntu 图形界面 桌面系统
-
解决Linux终端中“-bash: nano: command not found”问题
-
NBA 2K25虚拟内存不足/爆内存/内存占用100% 一文速解
-
Linux 中的文件描述符是什么?(linux 打开文件表 文件描述符)
-
K3s禁用Service Load Balancer,解决获取浏览器IP不正确问题
-
- 最近发表
-
- 服务器数据恢复—Raid5数据灾难不用愁,Raid5数据恢复原理了解下
- 服务器数据恢复—多次异常断电导致服务器raid不可用的数据恢复
- 服务器数据恢复-V7000存储更换磁盘数据同步失败的数据恢复案例
- 「服务器数据恢复」重装系统导致XFS文件系统分区丢失的数据恢复
- 服务器数据恢复-ESXi虚拟机被误删的数据恢复案例
- 「服务器数据恢复」Raid5阵列两块硬盘亮黄灯掉线的数据恢复案例
- 服务器数据恢复—基于oracle数据库的SAP数据恢复案例
- 「服务器虚拟化数据恢复」Xen Server环境下数据库数据恢复案例
- 服务器数据恢复—RAID故障导致oracle无法启动的数据恢复案例
- 服务器数据恢复—服务器磁盘阵列常见故障表现&解决方案
- 标签列表
-
- linux 查询端口号 (58)
- docker映射容器目录到宿主机 (66)
- 杀端口 (60)
- yum更换阿里源 (62)
- internet explorer 增强的安全配置已启用 (65)
- linux自动挂载 (56)
- 禁用selinux (55)
- sysv-rc-conf (69)
- ubuntu防火墙状态查看 (64)
- windows server 2022激活密钥 (56)
- 无法与服务器建立安全连接是什么意思 (74)
- 443/80端口被占用怎么解决 (56)
- ping无法访问目标主机怎么解决 (58)
- fdatasync (59)
- 405 not allowed (56)
- 免备案虚拟主机zxhost (55)
- linux根据pid查看进程 (60)
- dhcp工具 (62)
- mysql 1045 (57)
- 宝塔远程工具 (56)
- ssh服务器拒绝了密码 请再试一次 (56)
- ubuntu卸载docker (56)
- linux查看nginx状态 (63)
- tomcat 乱码 (76)
- 2008r2激活序列号 (65)