SSL/TLS历史
nanshan 2024-11-18 15:14 30 浏览 0 评论
1994年,NetScape公司设计了SSL协议(Secure Sockets Layer)的1.0版,但是未发布。
1995年,NetScape公司发布SSL 2.0版,很快发现有严重漏洞。
1996年,SSL 3.0版问世,得到大规模应用。
1999年,互联网标准化组织ISOC接替NetScape公司,发布了SSL的升级版TLS 1.0版。
2006年和2008年,TLS进行了两次升级,分别为TLS 1.1版和TLS 1.2版。最新的变动是2011年TLS 1.2的修订版,在2018年也发布了TLS1.3版本。
TLS 1.0通常被标示为SSL 3.1,TLS 1.1为SSL 3.2,TLS 1.2为SSL 3.3。
目前应用的最广泛的 TLS 是 1.2,而之前的协议(TLS1.1/1.0、SSLv3/v2)都已经被认为是不安全的了
SSL/TLS协议的基本过程(TLS1.2)
客户端向服务器端索要并验证公钥。
双方协商生成"对话密钥"。
双方采用"对话密钥"进行加密通信。
上面过程的前两步,又称为"握手阶段"(handshake)
下面是我们本次模拟访问https://www.baidu.com时抓的包,大家可以看到这里面涉及的流程逻辑
1 客户端发出请求(ClientHello)
(1) 支持的协议版本,比如TLS 1.2版。
(2) 一个客户端生成的随机数1,稍后用于生成"对话密钥"。
(3) 【支持的密码套件】支持的加密方法,比如RSA公钥加密。
(4) 支持的压缩方法。
(5) 一个session id,标识是否复用服务器之前的tls连接(需要服务器支持)
2 服务器回应(SeverHello)
(1) 确认使用的加密通信协议版本,比如TLS 1.2版本。如果浏览器与服务器支持的版本不一致,服务器关闭加密通信。
(2) 一个服务器生成的随机数2,稍后用于生成"对话密钥"。
(3) 【确认密码套件】确认使用的加密方法,比如RSA公钥加密,此时带有公钥信息。
(4) 一个session id(若同意复用连接)
3 服务器回应(Server Certificate)
(1)服务器证书(该证书即包含服务器公钥)。
4 服务器回应(Server Key Exchange)
(1)服务器算法变更通知,服务端给客户端一个用于 ECDHE 算法的公钥
5 服务器回应(Server CertificateRequest)
(1)请求客户端证书,此案例中没有,一般银行等需要客户端也加密的才有,比如 U 盾。
6 服务器回应(Server ServerHelloDone)- 标识着 serverHello 这个握手过程结束了。
7 客户端回应(Client Certificate)- 回应客户端证书,本案例不涉及
8 客户端回应(ClientKeyExchange)
(1)客户端在验证完服务器的证书后,生成一个新的随机数(pre_master),通过服务器的公钥加密后发给服务器。
到这里,服务端与客户端将 生成最终通信的对称加密秘钥:master_secret
计算过程根据上面得到的三个随机数:
随机数 1(客户端随机数):在 ClientHello 消息里,由客户端生成的随机数1
随机数 2(服务端随机数):在 ServerHello 消息里,由服务端生成的随机数2
随机数 3(pre_master):通过秘钥交换算法 ECDHE 计算出的,我们叫它 pre_master。
最终的对称加密秘钥 master_secret,就是根据这三个随机数共同计算出来的。
9 客户端回应(Client CertificateVerif)
(1)验证客户端证书有效性,本次不涉及
10 客户端回应(Client ChangeCipherSpec)
(1)秘钥改变通知,此时客户端已经生成了 master_secret,之后的消息将都通过 master secret 来加密。
11 客户端回应(Client Finish)
(1) 客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供服务器校验。
12 服务器回应(Server ChangeCipherSpec)
(1)秘钥改变通知,此时服务端也已经生成了 master_secret 了,后面的通信都用此值加密。
13 服务器回应(Server Finish)
(1)同 Client Finish,服务器端发送握手结束通知,同时会带上前面所发内容的hash签名到客户端,保证前面通信数据的正确性。
上述流程简易版(不包含验证客户端证书):
1. client --> server ClientHello
客户端生成随机数,并发送一组密码学套件供服务端选
2. server--> client ServerHello
服务端生成随机数,并从上述密码学套件组里选一个
3. server--> client Certificate
服务端发给客户端证书
4. server--> client ServerKeyExchange
服务端发给客户端秘钥交换算法所需的值
5. server--> client ServerHelloDone
服务端 hello 阶段结束
6. client --> server ClientKeyExchange
客户端发给服务端秘钥交换算法所需的值pre_master
7. client --> server ChangeCipherSpec
客户端告诉服务端,我已经知道秘钥了,之后的消息我就都加密发送了。
8. client --> server Finish
结束并验证
7. server --> server ChangeCipherSpec
服务端告诉客户端,我已经知道秘钥了,之后的消息我就都加密发送了。
9. server--> client Finish
结束并验证
图片流程
为什么一定要用三个随机数,来生成"会话密钥"呢?
"不管是客户端还是服务器,都需要随机数,这样生成的密钥才不会每次都一样。由于SSL协议中证书是静态的,因此十分有必要引入一种随机因素来保证协商出来的密钥的随机性。
对于RSA密钥交换算法来说,pre-master-key本身就是一个随机数,再加上hello消息中的随机数,三个随机数通过一个密钥导出器最终导出一个对称密钥。
pre master的存在在于SSL协议不信任每个主机都能产生完全随机的随机数,如果随机数不随机,那么pre master secret就有可能被猜出来,那么仅适用pre master secret作为密钥就不合适了,因此必须引入新的随机因素,那么客户端和服务器加上pre master secret三个随机数一同生成的密钥就不容易被猜出了,一个伪随机可能完全不随机,可是是三个伪随机就十分接近随机了,每增加一个自由度,随机性增加的可不是一。"
此外,如果前一步,服务器要求客户端证书,客户端会在这一步发送证书及相关信息。
以上介绍为TLS1.2的版本,其他TLS如1.0版本的流程会稍有不同,但大致逻辑是一样的。
TLS 1.2 转换流程逻辑也可以参考:26 | 信任始于握手:TLS1.2连接过程解析-极客时间
更新的 TLS 1.3也可以参考:27 | 更好更快的握手:TLS1.3特性解析-极客时间
TLS的主要目标是使SSL更安全,并使协议的规范更精确和完善。TLS 在SSL v3.0 的基础上,提供了以下增强内容:
1)更安全的MAC算法
2)更严密的警报
3)“灰色区域”规范的更明确的定义
TLS对于安全性的改进点如下(了解即可):
1)对于消息认证使用密钥散列法:TLS 使用“消息认证代码的密钥散列法”(HMAC),当记录在开放的网络(如因特网)上传送时,该代码确保记录不会被变更。SSLv3.0还提供键控消息认证,但HMAC比SSLv3.0使用的(消息认证代码)MAC 功能更安全。
2)增强的伪随机功能(PRF):PRF生成密钥数据。在TLS中,HMAC定义PRF。PRF使用两种散列算法保证其安全性。如果任一算法暴露了,只要第二种算法未暴露,则数据仍然是安全的。
3)改进的已完成消息验证:TLS和SSLv3.0都对两个端点提供已完成的消息,该消息认证交换的消息没有被变更。然而,TLS将此已完成消息基于PRF和HMAC值之上,这也比SSLv3.0更安全。
4)一致证书处理:与SSLv3.0不同,TLS试图指定必须在TLS之间实现交换的证书类型。
5)特定警报消息:TLS提供更多的特定和附加警报,以指示任一会话端点检测到的问题。TLS还对何时应该发送某些警报进行记录。
SSL/TLS 密码套件
浏览器和服务器在使用 TLS 建立连接时需要选择一组恰当的加密算法来实现安全通信,这些算法的组合被称为“密码套件”(cipher suite,也叫加密套件)。上述Client/Server Hello过程中就涉及密码套件的约定流程。
TLS 的密码套件命名格式为:密钥交换算法 + 签名算法 + 对称加密算法 + 摘要算法
如对于套件:“ECDHE-RSA-AES256-GCM-SHA384”,其解释为:握手时使用 ECDHE 算法进行密钥交换,用 RSA 签名和身份认证,握手后的通信使用 AES 对称算法,密钥长度 256 位,分组模式是 GCM,摘要算法 SHA384 用于消息认证和产生随机数。
HTTPS很安全,很古老也很成熟,为什么一直到今天我们还有66%的网站不支持HTTPS呢?
1、慢,HTTPS未经任何优化的情况下要比HTTP慢几百毫秒以上,特别在移动端可能要慢500毫秒以上,关于HTTPS慢和如何优化已经是一个非常系统和复杂的话题
2、贵,特别在计算性能和服务器成本方面。HTTPS为什么会增加服务器的成本?相信大家也都清楚HTTPS要额外计算,要频繁地做加密和解密操作,几乎每一个字节都需要做加解密,这就产生了服务器成本
另外还有:
1、大量的计算。SSL的每一个字节都涉及到较为复杂的计算。即使是clientHello,也需要在握手完成时做校验。
2、TLS协议的封装和解析。HTTPS所有数据都是按照TLS record格式进行封装和解析的。
3、协议的网络交互。从TLS的握手过程可以看出,即使不需要进行任何计算,TLS的握手也需要至少1个RTT(round trip time)以上的网络交互。
RTT(Round-Trip Time): 往返时延。在计算机网络中它是一个重要的性能指标,表示从发送端发送数据开始,到发送端收到来自接收端的确认(接收端收到数据后便立即发送确认),总共经历的时延。
4、HTTPS降低用户访问速度(需多次握手)
5、网站改用 HTTPS 以后,由 HTTP 跳转到 HTTPS 的方式增加了用户访问耗时(多数网站采用 301、302 跳转)
6、HTTPS 涉及到的安全算法会消耗 CPU 资源,需要增加服务器资源(https 访问过程需要加解密)
相关推荐
- Linux下C++访问web—使用libcurl库调用http接口发送解析json数据
-
一、背景这两天由于一些原因研究了研究如何在客户端C++代码中调用web服务端接口,需要访问url,并传入json数据,拿到返回值,并解析。 现在的情形是远程服务端的接口参数和返回类型都是json的字符...
- 干货 | 这 3 个超经典的Linux实战项目,让你分分钟入门Linux系统
-
编译安装nginx搭建小游戏网站编译安装流程下载nginx代码wget-P/server/tools/http:nginx.org/download/nginx1.22.0.tar.gz解压并进...
- 权限管理-树莓派linux⑦
-
前言当你在看这篇README,我感到非常荣幸。作为支持开源、分享的理念的我,给大家带来一些学习上的乐趣。由于本人并非专业的教育领域人士,很多时候天马行空,随心所欲的表达方式,可能让部分人感到不适。请根...
- 每天Linux学习:linux文件属性
-
ls-lih先通过这个命令来观察(-l列表显示目录内容详细,-i第一列显示inode,-h将文件大小显示为我们常见的kb,mb等单位)从截图中我们能看出文件属性由这9列信息组成:第1列:inod...
- Linux ln、unlink命令用法
-
ln命令可以用来创建软链接或硬链接。1.创建软链接:ln-s源文件目标文件例如:ln-s/usr/lib/libc.so/usr/local/lib/libc.so.6这样就创建了一...
- Linux 系统启动完整流程
-
一、启动系统流程简介如上图,简述系统启动的大概流程:1:硬件引导UEFi或BIOS初始化,运行POST开机自检2:grub2引导阶段系统固件会从MBR中读取启动加载器,然后将控制权交给启动加载器GRU...
- 最火的 CI/CD 平台 Jenkins 详细搭建教程(for Linux)
-
在正式学习Jenkins之前我们需要对两个名词有一定了解,其一是DevOps,另外一个就是CI/CD。何为DevOps?来自wiki百科介绍DevOps是一系列软件开发实践,强调开发人员(Dev)和测...
- hadoop集群搭建详细方法
-
第一步:搭建配置新的虚拟机格式化之前先把tmp目录下所有与Hadoop有关的信息全部删除rm-rf/tmp/hadoop-centos*开启之后jps只有Java的进程:sudovi/et...
- Linux 常用命令集合
-
系统信息arch显示机器的处理器架构(1)uname-m显示机器的处理器架构(2)uname-r显示正在使用的内核版本dmidecode-q显示硬件系统部件-(SMBIOS/DM...
- inode文件索引,你了解嘛?你的Linux基础真的扎实嘛?
-
一、inode是什么?深入了解inode,就要从文件存储说起来!文件储存在硬盘上,硬盘的最小存储单位叫做"扇区"(Sector)。每个扇区储存512字节。读取硬盘的时候,不会一个个扇区地读取,这样效率...
- linux实例之创建service服务
-
前面我们讲过可以通过service命令来启动,重启,停止指定的服务程序。service服务可以在系统启动时,自动运行该服务,我们可以利用这一特点,创建service文件,并且让系统重启时,自动执行命令...
- linux之软连接和硬连接的区别
-
硬连接硬链接是通过索引节点进行的链接。在Linux中,多个文件指向同一个索引节点是允许的,像这样的链接就是硬链接。硬链接只能在同一文件系统中的文件之间进行链接,不能对目录进行创建。如果删除硬链接对应的...
- Linux inode 详解
-
简介索引节点(IndexNode)是Linux/类unix系统文件系统上的一种数据结构,用于存储有关文件或目录的元数据。它包含文件的所有信息,除了文件名和数据。inode在文件系统如何存储和检...
- Bash 脚本实例:获取符号链接的目标位置
-
我们都熟悉Linux中的符号链接,通常称为符号链接或软链接,符号链接是指向任何文件系统中的另一个文件或目录的特定文件。本文将介绍Linux中符号链接的基础知识,并创建一个简单的bash脚本...
- windows快捷方式,符号链接,软链接和硬链接
-
当一个软件大量的向C盘写入数据,而我们又无法修改软件保存数据的位置时,可以使用windows系统的“符号链接”(SymbolicLink)功能,将保存数据的位置修改到其它分区中。符号链接类似于我们熟...
你 发表评论:
欢迎- 一周热门
-
-
如何在安装前及安装后修改黑群晖的Mac地址和Sn系列号
-
爱折腾的特斯拉车主必看!手把手教你TESLAMATE的备份和恢复
-
[常用工具] OpenCV_contrib库在windows下编译使用指南
-
Ubuntu系统Daphne + Nginx + supervisor部署Django项目
-
WindowsServer2022|配置NTP服务器的命令
-
WIN11 安装配置 linux 子系统 Ubuntu 图形界面 桌面系统
-
解决Linux终端中“-bash: nano: command not found”问题
-
NBA 2K25虚拟内存不足/爆内存/内存占用100% 一文速解
-
Linux 中的文件描述符是什么?(linux 打开文件表 文件描述符)
-
K3s禁用Service Load Balancer,解决获取浏览器IP不正确问题
-
- 最近发表
- 标签列表
-
- linux 查询端口号 (58)
- docker映射容器目录到宿主机 (66)
- 杀端口 (60)
- yum更换阿里源 (62)
- internet explorer 增强的安全配置已启用 (65)
- linux自动挂载 (56)
- 禁用selinux (55)
- sysv-rc-conf (69)
- ubuntu防火墙状态查看 (64)
- windows server 2022激活密钥 (56)
- 无法与服务器建立安全连接是什么意思 (74)
- 443/80端口被占用怎么解决 (56)
- ping无法访问目标主机怎么解决 (58)
- fdatasync (59)
- 405 not allowed (56)
- 免备案虚拟主机zxhost (55)
- linux根据pid查看进程 (60)
- dhcp工具 (62)
- mysql 1045 (57)
- 宝塔远程工具 (56)
- ssh服务器拒绝了密码 请再试一次 (56)
- ubuntu卸载docker (56)
- linux查看nginx状态 (63)
- tomcat 乱码 (76)
- 2008r2激活序列号 (65)