百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

掌握模型性能:使用 GridSearchCV 调整超参数

nanshan 2024-10-12 05:41 35 浏览 0 评论

使用 GridSearchCV 进行超参数优化的综合指南


超参数调优概述

Hyper参数是在学习机的学习过程之前设置的参数,在模型训练的学习过程中不会直接从数据中学习。与模型参数不同,这些参数不是从数据中学习的,超参数是由数据科学家或机器学习专家根据他们的知识和直觉确定的。


超参数调优对模型性能的意义: 正确选择超参数可以提高机器学习模型的性能。通过调整超参数,您可以确定可提高准确性、精度或其他性能度量的区域,从而提高速度和建模精度。调优良好的模型更加健壮和稳定,因为它们对输入的微小变化和训练集的微小变化不太敏感。


网格搜索简历简介

GridSearchCV(交叉验证)是一种超参数优化技术,用于搜索机器学习模型的超参数值的最佳组合。它是 Python 中 sci-kit-learn 库的一部分,广泛用于超参数优化。


在决策树上使用 GridsearchCV 的示例:


不使用 GridsearchCV:


from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.2,random_state=1)

#decision tree classifier

dtc = DecisionTreeClassifier()


# Fit the classifier to the training data

dtc.fit(x_train, y_train)


# Predict the labels for the test data

predictions = dtc.predict(x_test)


# Evaluate the model

dtc_accuracy = dtc.score(x_test, y_test)

print(dtc_accuracy)

使用 GridSearchCV 后:


from sklearn.model_selection import GridSearchCV

from sklearn.metrics import accuracy_score

#parm grid is dictionry for tuning hyperperameters of Decision Tree

param_grid = {

    'criterion': ['gini', 'entropy'],

    'max_depth': [None, 5, 10, 20],

    'min_samples_split': [3, 7, 12],

    'min_samples_leaf': [2, 8, 10]

}


#Performing GridSearch to find the best hyperparameters

grid_search = GridSearchCV(estimator=dtc, param_grid=param_grid, cv=5, n_jobs=-1)

grid_search.fit(x_train, y_train)


#Training the decision tree model with the best hyperparameters

best_dt_model = grid_search.best_estimator_


#Evaluating the model on the testing set

y_pred = best_dt_model.predict(x_test)

accuracy = accuracy_score(y_test, y_pred)

grid_search.best_score_

随机搜索CV:在某些特殊情况下,不适合使用网格searcCV或RandomgridSearcgCV,这些情况是:


当数据被限制为以有效的方式使用网格搜索时,应该有适当数量的数据,因为gridsearchCV使用K折叠交叉验证。在这种情况下,可以使用更高级的技术(如贝叶斯优化)作为有效搜索超参数空间的替代方法。这种情况是:


import numpy as np

from sklearn.model_selection import RandomizedSearchCV

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score


# Creating a parameter grid

param_distributions = {

    'criterion': ['gini', 'entropy'],

    'max_depth': np.arange(8, 27),

    'min_samples_split': np.arange(34, 123),

    'min_samples_leaf': np.arange(14, 189)

}


# Created a decision tree classifier

dtc = DecisionTreeClassifier()


# Created a RandomizedSearchCV object

randomized_search = RandomizedSearchCV(estimator=dtc, param_distributions=param_distributions, cv=5, n_jobs=-1)



randomized_search.fit(x_train, y_train)


# Printing the best parameters

print(randomized_search.best_params_)


# Training the decision tree model with the best hyperparameters

best_dt_model = randomized_search.best_estimator_


# Evaluating the model on the testing set

y_pred = best_dt_model.predict(x_test)

accuracy = accuracy_score(y_test, y_pred)

print(accuracy)

randomized_search.best_score_

了解网格搜索CV:

使用GridSearchCV()方法,该方法在scikit-learn类model_selection中可用。它可以通过创建 GridSearchCV() 的对象来启动它需要 4 个参数估计器、param_grid、cv 和 n-jobs。这些参数的解释如下: 1. 估计器 — 一个 scikit-learn 模型 2. param_grid -:包含参数名称和参数值列表的字典。 3. 评分:绩效衡量标准。例如,“dtc”表示决策树模型,“precision”表示分类模型。 4. cv :它代表了许多 k 折叠交叉验证。


网格搜索CV的工作:

它通过搜索可能的超参数值网络并评估每个超参数组合的模型函数来有效工作。然后使用超参数训练最终模型,使模型表现良好。


在测试所有可能的超参数对并评估其性能后,GridSearchCV 根据评估标准选择提供最佳性能的超参数组合。


确定最佳超参数,GridSearchCV 将使用整个训练数据集重新训练模型,这次使用最佳超参数。


最后,在看不见的测试数据上测试具有最佳超参数的模型,以预测其在新的、看不见的数据上的性能。


结论:

使用 GridSearchCV 的主要优点是它可以自动执行超参数优化过程,并使您免于手动尝试许多连接。它通过探索超参数空间来提高新数据的性能,从而增加了为模型找到最佳或接近最优超参数的风险。


GridSearchCV 的计算成本可能很高,尤其是在您拥有大型数据集或复杂的多变量模型时。在这种情况下,最好考虑使用 RandomizedSearchCV,它探索不同的超参数域,并在性能和预算之间提供良好的权衡。


然而,在某些情况下,其他超渗透率技术更有用,例如当数据有限时,贝叶斯优化可以用作有效搜索超参数空间的替代方法。

相关推荐

0722-6.2.0-如何在RedHat7.2使用rpm安装CDH(无CM)

文档编写目的在前面的文档中,介绍了在有CM和无CM两种情况下使用rpm方式安装CDH5.10.0,本文档将介绍如何在无CM的情况下使用rpm方式安装CDH6.2.0,与之前安装C5进行对比。环境介绍:...

ARM64 平台基于 openEuler + iSula 环境部署 Kubernetes

为什么要在arm64平台上部署Kubernetes,而且还是鲲鹏920的架构。说来话长。。。此处省略5000字。介绍下系统信息;o架构:鲲鹏920(Kunpeng920)oOS:ope...

生产环境starrocks 3.1存算一体集群部署

集群规划FE:节点主要负责元数据管理、客户端连接管理、查询计划和查询调度。>3节点。BE:节点负责数据存储和SQL执行。>3节点。CN:无存储功能能的BE。环境准备CPU检查JDK...

在CentOS上添加swap虚拟内存并设置优先级

现如今很多云服务器都会自己配置好虚拟内存,当然也有很多没有配置虚拟内存的,虚拟内存可以让我们的低配服务器使用更多的内存,可以减少很多硬件成本,比如我们运行很多服务的时候,内存常常会满,当配置了虚拟内存...

国产深度(deepin)操作系统优化指南

1.升级内核随着deepin版本的更新,会自动升级系统内核,但是我们依旧可以通过命令行手动升级内核,以获取更好的性能和更多的硬件支持。具体操作:-添加PPAs使用以下命令添加PPAs:```...

postgresql-15.4 多节点主从(读写分离)

1、下载软件[root@TX-CN-PostgreSQL01-252software]#wgethttps://ftp.postgresql.org/pub/source/v15.4/postg...

Docker 容器 Java 服务内存与 GC 优化实施方案

一、设置Docker容器内存限制(生产环境建议)1.查看宿主机可用内存bashfree-h#示例输出(假设宿主机剩余16GB可用内存)#Mem:64G...

虚拟内存设置、解决linux内存不够问题

虚拟内存设置(解决linux内存不够情况)背景介绍  Memory指机器物理内存,读写速度低于CPU一个量级,但是高于磁盘不止一个量级。所以,程序和数据如果在内存的话,会有非常快的读写速度。但是,内存...

Elasticsearch性能调优(5):服务器配置选择

在选择elasticsearch服务器时,要尽可能地选择与当前业务量相匹配的服务器。如果服务器配置太低,则意味着需要更多的节点来满足需求,一个集群的节点太多时会增加集群管理的成本。如果服务器配置太高,...

Es如何落地

一、配置准备节点类型CPU内存硬盘网络机器数操作系统data节点16C64G2000G本地SSD所有es同一可用区3(ecs)Centos7master节点2C8G200G云SSD所有es同一可用区...

针对Linux内存管理知识学习总结

现在的服务器大部分都是运行在Linux上面的,所以,作为一个程序员有必要简单地了解一下系统是如何运行的。对于内存部分需要知道:地址映射内存管理的方式缺页异常先来看一些基本的知识,在进程看来,内存分为内...

MySQL进阶之性能优化

概述MySQL的性能优化,包括了服务器硬件优化、操作系统的优化、MySQL数据库配置优化、数据库表设计的优化、SQL语句优化等5个方面的优化。在进行优化之前,需要先掌握性能分析的思路和方法,找出问题,...

Linux Cgroups(Control Groups)原理

LinuxCgroups(ControlGroups)是内核提供的资源分配、限制和监控机制,通过层级化进程分组实现资源的精细化控制。以下从核心原理、操作示例和版本演进三方面详细分析:一、核心原理与...

linux 常用性能优化参数及理解

1.优化内核相关参数配置文件/etc/sysctl.conf配置方法直接将参数添加进文件每条一行.sysctl-a可以查看默认配置sysctl-p执行并检测是否有错误例如设置错了参数:[roo...

如何在 Linux 中使用 Sysctl 命令?

sysctl是一个用于配置和查询Linux内核参数的命令行工具。它通过与/proc/sys虚拟文件系统交互,允许用户在运行时动态修改内核参数。这些参数控制着系统的各种行为,包括网络设置、文件...

取消回复欢迎 发表评论: