百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Redis客户端缓存的几种实现方式

nanshan 2025-05-11 17:25 24 浏览 0 评论

前言:

Redis作为当今最流行的内存数据库和缓存系统,被广泛应用于各类应用场景。然而,即使Redis本身性能卓越,在高并发场景下,应用于Redis服务器之间的网络通信仍可能成为性能瓶颈。

所以客户端缓存非常重要,客户端缓存指在应该程序内存中维护一份redis数据的本地副本,以较少网络请求与redis服务器的交互,降低延迟。下面介绍几种方式。

一:本地内存缓存

本地内存缓存是最直接的客户端缓存实现方式,它在应用程序内存中使用数据结构(如HashMap、ConcurrentHashMap或专业缓存库如Caffeine、Guava Cache等)存储从Redis获取的数据。这种方式完全由应用程序自己管理,与Redis服务器无关。

以下是使用Spring Boot和Caffeine实现的简单本地缓存示例

@Service
public class RedisLocalCacheService {
    
    private final StringRedisTemplate redisTemplate;
    private final Cache<String, String> localCache;
    
    public RedisLocalCacheService(StringRedisTemplate redisTemplate) {
        this.redisTemplate = redisTemplate;
        
        // 配置Caffeine缓存
        this.localCache = Caffeine.newBuilder()
                .maximumSize(10_000)  // 最大缓存条目数
                .expireAfterWrite(Duration.ofMinutes(5))  // 写入后过期时间
                .recordStats()  // 记录统计信息
                .build();
    }
    
    public String get(String key) {
        // 首先尝试从本地缓存获取
        String value = localCache.getIfPresent(key);
        
        if (value != null) {
            // 本地缓存命中
            return value;
        }
        
        // 本地缓存未命中,从Redis获取
        value = redisTemplate.opsForValue().get(key);
        
        if (value != null) {
            // 将从Redis获取的值放入本地缓存
            localCache.put(key, value);
        }
        
        return value;
    }
    
    public void set(String key, String value) {
        // 更新Redis
        redisTemplate.opsForValue().set(key, value);
        
        // 更新本地缓存
        localCache.put(key, value);
    }
    
    public void delete(String key) {
        // 从Redis中删除
        redisTemplate.delete(key);
        
        // 从本地缓存中删除
        localCache.invalidate(key);
    }
    
    // 获取缓存统计信息
    public Map<String, Object> getCacheStats() {
        CacheStats stats = localCache.stats();
        Map<String, Object> statsMap = new HashMap<>();
        
        statsMap.put("hitCount", stats.hitCount());
        statsMap.put("missCount", stats.missCount());
        statsMap.put("hitRate", stats.hitRate());
        statsMap.put("evictionCount", stats.evictionCount());
        
        return statsMap;
    }
}

优点

  • 实现简单,易于集成
  • 无需额外的服务器支持
  • 可完全控制缓存行为(大小、过期策略等)
  • 显著减少网络请求次数
  • 对Redis服务器完全透明

缺点

  • 缓存一致性问题:当Redis数据被其他应用或服务更新时,本地缓存无法感知变化
  • 内存占用:需要消耗应用程序的内存资源
  • 冷启动问题:应用重启后缓存需要重新预热
  • 分布式环境下多实例之间的缓存不一致

二:Redis服务器辅助的客户端缓存

Redis 6.0引入了服务器辅助的客户端缓存功能,也称为跟踪模式(Tracking)。在这种模式下,Redis服务器会跟踪客户端请求的键,当这些键被修改时,服务器会向客户端发送失效通知。这种机制确保了客户端缓存与Redis服务器之间的数据一致性。

Redis提供了两种跟踪模式:

  1. 默认模式:服务器精确跟踪每个客户端关注的键
  2. 广播模式:服务器广播所有键的变更,客户端过滤自己关心的键

使用Lettuce(Spring Boot Redis的默认客户端)实现服务器辅助的客户端缓存:

@Service
public class RedisTrackingCacheService {
    
    private final StatefulRedisConnection<String, String> connection;
    private final RedisCommands<String, String> commands;
    private final Map<String, String> localCache = new ConcurrentHashMap<>();
    private final Set<String> trackedKeys = ConcurrentHashMap.newKeySet();
    
    public RedisTrackingCacheService(RedisClient redisClient) {
        this.connection = redisClient.connect();
        this.commands = connection.sync();
        
        // 配置客户端缓存失效监听器
        connection.addListener(message -> {
            if (message instanceof PushMessage) {
                PushMessage pushMessage = (PushMessage) message;
                if ("invalidate".equals(pushMessage.getType())) {
                    List<Object> invalidations = pushMessage.getContent();
                    handleInvalidations(invalidations);
                }
            }
        });
        
        // 启用客户端缓存跟踪
        commands.clientTracking(ClientTrackingArgs.Builder.enabled());
    }
    
    public String get(String key) {
        // 首先尝试从本地缓存获取
        String value = localCache.get(key);
        
        if (value != null) {
            return value;
        }
        
        // 本地缓存未命中,从Redis获取
        value = commands.get(key);
        
        if (value != null) {
            // 启用跟踪后,Redis服务器会记录这个客户端正在跟踪这个键
            localCache.put(key, value);
            trackedKeys.add(key);
        }
        
        return value;
    }
    
    public void set(String key, String value) {
        // 更新Redis
        commands.set(key, value);
        
        // 更新本地缓存
        localCache.put(key, value);
        trackedKeys.add(key);
    }
    
    private void handleInvalidations(List<Object> invalidations) {
        if (invalidations != null && invalidations.size() >= 2) {
            // 解析失效消息
            String invalidationType = new String((byte[]) invalidations.get(0));
            
            if ("key".equals(invalidationType)) {
                // 单个键失效
                String invalidatedKey = new String((byte[]) invalidations.get(1));
                localCache.remove(invalidatedKey);
                trackedKeys.remove(invalidatedKey);
            } else if ("prefix".equals(invalidationType)) {
                // 前缀失效
                String prefix = new String((byte[]) invalidations.get(1));
                Iterator<Map.Entry<String, String>> it = localCache.entrySet().iterator();
                while (it.hasNext()) {
                    String key = it.next().getKey();
                    if (key.startsWith(prefix)) {
                        it.remove();
                        trackedKeys.remove(key);
                    }
                }
            }
        }
    }
    
    // 获取缓存统计信息
    public Map<String, Object> getCacheStats() {
        Map<String, Object> stats = new HashMap<>();
        stats.put("cacheSize", localCache.size());
        stats.put("trackedKeys", trackedKeys.size());
        return stats;
    }
    
    // 清除本地缓存但保持跟踪
    public void clearLocalCache() {
        localCache.clear();
    }
    
    // 关闭连接并清理资源
    @PreDestroy
    public void cleanup() {
        if (connection != null) {
            connection.close();
        }
    }
}

优点

  • 自动维护缓存一致性,无需手动同步
  • Redis服务器能感知客户端缓存状态
  • 显著减少网络请求数量
  • 支持细粒度(键级别)的缓存控制
  • 实时感知数据变更,数据一致性保证强

缺点

  • 需要Redis 6.0以上版本支持
  • 增加Redis服务器内存占用(跟踪状态)
  • 客户端连接必须保持活跃
  • 服务器广播模式可能产生大量失效消息
  • 实现复杂度高于简单本地缓存

三:基于过期时间的缓存失效策略

基于过期时间(Time-To-Live,TTL)的缓存失效策略是一种简单有效的客户端缓存方案。它为本地缓存中的每个条目设置一个过期时间,过期后自动删除或刷新。

使用Spring Cache和Caffeine实现TTL缓存:

@Configuration
public class CacheConfig {
    
    @Bean
    public CacheManager cacheManager() {
        CaffeineCacheManager cacheManager = new CaffeineCacheManager();
        cacheManager.setCaffeineSpec(CaffeineSpec.parse(
                "maximumSize=10000,expireAfterWrite=300s,recordStats"));
        return cacheManager;
    }
}

@Service
public class RedisTtlCacheService {
    
    private final StringRedisTemplate redisTemplate;
    
    @Autowired
    public RedisTtlCacheService(StringRedisTemplate redisTemplate) {
        this.redisTemplate = redisTemplate;
    }
    
    @Cacheable(value = "redisCache", key = "#key")
    public String get(String key) {
        return redisTemplate.opsForValue().get(key);
    }
    
    @CachePut(value = "redisCache", key = "#key")
    public String set(String key, String value) {
        redisTemplate.opsForValue().set(key, value);
        return value;
    }
    
    @CacheEvict(value = "redisCache", key = "#key")
    public void delete(String key) {
        redisTemplate.delete(key);
    }
    
    // 分层缓存 - 不同过期时间的缓存
    @Cacheable(value = "shortTermCache", key = "#key")
    public String getWithShortTtl(String key) {
        return redisTemplate.opsForValue().get(key);
    }
    
    @Cacheable(value = "longTermCache", key = "#key")
    public String getWithLongTtl(String key) {
        return redisTemplate.opsForValue().get(key);
    }
    
    // 在程序逻辑中手动控制过期时间
    public String getWithDynamicTtl(String key, Duration ttl) {
        // 使用LoadingCache,可以动态设置过期时间
        Cache<String, String> dynamicCache = Caffeine.newBuilder()
                .expireAfterWrite(ttl)
                .build();
        
        return dynamicCache.get(key, k -> redisTemplate.opsForValue().get(k));
    }
    
    // 定期刷新缓存
    @Scheduled(fixedRate = 60000) // 每分钟执行
    public void refreshCache() {
        // 获取需要刷新的键列表
        List<String> keysToRefresh = getKeysToRefresh();
        
        for (String key : keysToRefresh) {
            // 触发重新加载,会调用被@Cacheable注解的方法
            this.get(key);
        }
    }
    
    private List<String> getKeysToRefresh() {
        // 实际应用中,可能从配置系统或特定的Redis set中获取
        return Arrays.asList("config:app", "config:features", "daily:stats");
    }
    
    // 使用二级缓存模式,对热点数据使用更长的TTL
    public String getWithTwoLevelCache(String key) {
        // 首先查询本地一级缓存(短TTL)
        Cache<String, String> l1Cache = Caffeine.newBuilder()
                .maximumSize(1000)
                .expireAfterWrite(Duration.ofSeconds(10))
                .build();
        
        String value = l1Cache.getIfPresent(key);
        if (value != null) {
            return value;
        }
        
        // 查询本地二级缓存(长TTL)
        Cache<String, String> l2Cache = Caffeine.newBuilder()
                .maximumSize(10000)
                .expireAfterWrite(Duration.ofMinutes(5))
                .build();
        
        value = l2Cache.getIfPresent(key);
        if (value != null) {
            // 提升到一级缓存
            l1Cache.put(key, value);
            return value;
        }
        
        // 查询Redis
        value = redisTemplate.opsForValue().get(key);
        if (value != null) {
            // 更新两级缓存
            l1Cache.put(key, value);
            l2Cache.put(key, value);
        }
        
        return value;
    }
}


优点

  • 实现简单,易于集成到现有系统
  • 不依赖Redis服务器特殊功能
  • 适用于任何Redis版本
  • 内存占用可控,过期的缓存会自动清理
  • 通过调整TTL可以在一致性和性能之间取得平衡

缺点

  • 无法立即感知数据变更,存在一致性窗口期
  • TTL设置过短会导致缓存效果不佳
  • TTL设置过长会增加数据不一致的风险
  • 所有键使用统一TTL策略时缺乏灵活性
  • 可能出现"缓存风暴"(大量缓存同时过期导致突发流量)

总结

Redis客户端缓存是提升应用性能的强大工具,通过减少网络请求和数据库访问,可以显著降低延迟并提高吞吐量。
通过正确应用客户端缓存技术,可以在保持数据一致性的同时,显著提升系统性能和用户体验。

相关推荐

使用nginx配置域名及禁止直接通过IP访问网站

前段时间刚搭建好这个网站,一直没有关注一个问题,那就是IP地址也可以访问我的网站,今天就专门研究了一下nginx配置问题,争取把这个问题研究透彻。1.nginx配置域名及禁止直接通过IP访问先来看n...

如何在 Linux 中使用 PID 号查找进程名称?

在Linux的复杂世界中,进程是系统运行的核心,每个进程都由一个唯一的「进程ID」(PID)标识。无论是系统管理员在排查失控进程,还是开发者在调试应用程序,知道如何将PID映射到对应的进程名称都是一项...

Linux服务器硬件信息查询与日常运维命令总结

1.服务器硬件信息查询1.1CPU信息查询命令功能描述示例lscpu显示CPU架构、核心数、线程数等lscpucat/proc/cpuinfo详细CPU信息(型号、缓存、频率)cat/proc/c...

Ubuntu 操作系统常用命令详解(ubuntu常用的50个命令)

UbuntuLinux是一款流行的开源操作系统,广泛应用于服务器、开发、学习等场景。命令行是Ubuntu的灵魂,也是高效、稳定管理系统的利器。本文按照各大常用领域,详细总结Ubuntu必学...

从 0 到 1:打造基于 Linux 的私有 API 网关平台

在当今微服务架构盛行的时代,API网关作为服务入口和安全屏障,其重要性日益凸显。你是否想过,不依赖商业方案,完全基于开源组件,在Linux上构建一个属于自己的私有API网关平台?今天就带你...

Nginx搭建简单直播服务器(nginx 直播服务器搭建)

前言使用Nginx+Nginx-rtmp-module在Ubuntu中搭建简单的rtmp推流直播服务器。服务器环境Ubuntu16.04相关概念RTMP:RTMP协议是RealTi...

Linux连不上网?远程卡?这篇网络管理指南你不能错过!

大家好!今天咱们聊个所有Linux用户都躲不开的“老大难”——网络管理。我猜你肯定遇到过这些崩溃时刻:新装的Linux系统连不上Wi-Fi,急得直拍桌子;远程服务器SSH连不上,提示“Connecti...

7天从0到上线!手把手教你用Python Flask打造爆款Web服务

一、为什么全网开发者都在疯学Flask?在当今Web开发的战场,Flask就像一把“瑞士军刀”——轻量级架构让新手3天速成,灵活扩展能力又能支撑百万级用户项目!对比Django的“重型装甲”,Flas...

nginx配置文件详解(nginx反向代理配置详解)

Nginx是一个强大的免费开源的HTTP服务器和反向代理服务器。在Web开发项目中,nginx常用作为静态文件服务器处理静态文件,并负责将动态请求转发至应用服务器(如Django,Flask,et...

30 分钟搞定 Docker 安装与 Nginx 部署,轻松搭建高效 Web 服务

在云计算时代,利用容器技术快速部署应用已成为开发者必备技能。本文将手把手教你在阿里云轻量应用服务器上,通过Docker高效部署Nginx并发布静态网站,全程可视化操作,新手也能轻松上手!一、准...

Nginx 配置实战:从摸鱼到部署,手把手教你搞定生产级配置

各位摸鱼搭子们!今天咱不聊代码里的NullPointerException,改聊点「摸鱼必备生存技能」——Nginx配置!先灵魂拷问一下:写了一堆接口却不会部署?服务器被恶意请求打崩过?静态资源加载...

如何使用 Daphne + Nginx + supervisor部署 Django

前言:从Django3.0开始支持ASGI应用程序运行,使Django完全具有异步功能。Django目前已经更新到5.0,对异步支持也越来越好。但是,异步功能将仅对在ASGI下运行的应用程序可用...

Docker命令最全详解(39个最常用命令)

Docker是云原生的核心,也是大厂的必备技能,下面我就全面来详解Docker核心命令@mikechen本文作者:陈睿|mikechen文章来源:mikechen.cc一、Docker基本命令doc...

ubuntu中如何查看是否已经安装了nginx

在Ubuntu系统中,可以通过以下几种方法检查是否已安装Nginx:方法1:使用dpkg命令(适用于Debian/Ubuntu)bashdpkg-l|grepnginx输出...

OVN 概念与实践(德育概念的泛化在理论和实践中有什么弊端?)

今天我们来讲解OVN的概念和基础实践,要理解本篇博客的内容,需要前置学习:Linux网络设备-Bridge&VethPairLinux网络设备-Bridge详解OVS+Fa...

取消回复欢迎 发表评论: